$\overset{\bullet}{o}$

 $RS \perp PQ$, PQ = RS = 16 cm and PT = 2 cm. Find the radius of the circle.

Chapter 11

11.1 Tangents to a Circle

Level 1 Example 11.1

In the figure, O is the centre of the circle. AP is the tangent to the circle at P and $\angle BOP = 110^{\circ}$. Find $\angle APB$.

Solution In $\triangle BOP$, $\therefore OB = OP$ (radii) $\therefore \angle OBP = \angle OPB$ (base $\angle s$, isos. \triangle) $\angle BOP + \angle OBP + \angle OPB = 180^{\circ}$ $(\angle sum of \triangle)$ $110^{\circ} + \angle OPB + \angle OPB = 180^{\circ}$ $2\angle OPB = 70^{\circ}$ $\angle OPB = 35^{\circ}$ $\angle OPA = 90^{\circ}$ (tangent \perp radius) $\angle OPB + \angle APB = 90^{\circ}$ $35^\circ + \angle APB = 90^\circ$ $\angle APB = 55^{\circ}$

Practice 11.1

In the figure, O is the centre of the circle. AP is the tangent to the circle at P and $\angle OBP = 52^{\circ}$. Find $\angle APB$.

Solution

<<u>121</u>

Chapter 11

Example 11.2

In the figure, *O* is the centre of the circle. *POR* and *AQR* are straight lines. $\angle POQ = 82^{\circ}$ and $\angle PAR = 49^{\circ}$. Determine whether *AP* is the tangent to the circle at *P*.

Solution

$$\angle PRQ = \frac{1}{2} \angle POQ$$

$$\angle PRA = \frac{1}{2} \times 82^{\circ}$$

$$= 41^{\circ}$$
In $\triangle PRA$,
$$\angle PRA + \angle PAR + \angle APR = 180^{\circ}$$

$$41^{\circ} + 49^{\circ} + \angle APO = 180^{\circ}$$

$$\angle APO = 90^{\circ}$$

$$\therefore AP \text{ is the tangent to the circle at } P.$$

$$Converse of tangent \perp radius$$

_____<u>122</u>

Practice 11.2

In the figure, *O* is the centre of the circle. *ARO* is a straight line. $\angle PQR = 23^{\circ}$ and $\angle PAO = 44^{\circ}$. Determine whether *AP* is the tangent to the circle at *P*.

Solution